
GPT Scratch - Project Paper
GPT-Scratch: Building Character-Level
Language Models from Scratch
Arnav Kucheriya LinkedIn] [GitHub]

Abstract
This project presents the development and analysis of two character-level
language models implemented from scratch using PyTorch: a statistical Bigram
model and a simplified transformer-based GPT Generative Pretrained
Transformer). The models are trained on Shakespearean text and evaluated on
metrics including loss, perplexity, generation quality, and GPU resource usage.
The Bigram model provides a fast and intuitive baseline, while the GPT model
demonstrates the expressive power of deep learning-based la...

1. Introduction
Language modeling is a foundational task in natural language processing NLP,
involving the prediction of the next element in a sequence of tokens. Traditionally,
this has included statistical models such as n-grams. More recently, neural
architectures like recurrent neural networks RNNs) and transformers have
enabled substantial performance gains in understanding and generating natural
language.

This work explores two ends of this modeling spectrum:

Bigram Language Model: a statistical model that uses conditional probabilities
of character pairs.

Mini GPT: a transformer-based model that uses multi-head self-attention and
positional encoding to model dependencies over longer sequences.

By comparing these models in a controlled, character-level setup, we aim to
understand their learning behavior, computational cost, and generation capability.

GPT Scratch  Project Paper 1

https://linkedin.com/in/ArnavKucheriya
https://github.com/arnavkucheriya

2. Dataset and Preprocessing
The dataset consists of character-level excerpts from Shakespeareʼs plays,
provided in miniSpeare.txt . The preprocessing pipeline includes:

Building a vocabulary of unique characters.

Creating mappings from characters to integer IDs and vice versa.

Converting the full corpus into a tensor of integers.

Splitting the dataset into training and validation subsets 90/10 split).

Example preprocessing code:

stoi = { ch:i for i,ch in enumerate(chars) }
itos = { i:ch for i,ch in enumerate(chars) }
encode = lambda s: [stoi[c] for c in s]
decode = lambda l: ''.join([itos[i] for i in l])

This enables training on tokenized sequences while allowing for easy decoding
during inference.

3. Model Architectures

3.1 Bigram Model
The Bigram model is a direct implementation of a conditional probability table for
character pairs.

 It is implemented using an embedding table of shape (vocab_size, vocab_size) where
each character maps directly to logits over possible next characters. Training is
done via cross-entropy loss.

GPT Scratch  Project Paper 2

Training Loop

for iter in range(max_iters):
 xb, yb = get_batch('train')
 logits, loss = model(xb, yb)
 optimizer.zero_grad()
 loss.backward()
 optimizer.step()

Key Characteristics:

No notion of context beyond one preceding character.

Fast to train, but unable to learn patterns beyond simple co-occurrences.

Key Implementation

class BigramLanguageModel(nn.Module):
 def __init__(self, vocab_size):
 super().__init__()
 self.token_embedding_table = nn.Embedding(vocab_size, vocab_size)

 def forward(self, idx, targets=None):
 logits = self.token_embedding_table(idx)
 if targets is None:
 loss  None
 else:
 B, T, C  logits.shape
 logits = logits.view(B*T, C
 targets = targets.view(B*T)
 loss  F.cross_entropy(logits, targets)
 return logits, loss

GPT Scratch  Project Paper 3

3.2 Mini GPT Model
The Mini GPT model is a compact version of the GPT architecture.

It includes:

Token and positional embeddings.

Embedding Tables

self.token_embedding_table = nn.Embedding(vocab_size, n_embd)
self.position_embedding_table = nn.Embedding(block_size, n_embd)

Stacked transformer blocks with multi-head self-attention.

Transformer Block

class Block(nn.Module):
 def forward(self, x):
 x = x + self.sa(self.ln1(x))
 x = x + self.ffwd(self.ln2(x))
 return x

GPT Scratch  Project Paper 4

Self-Attention Head

class Head(nn.Module):
 def forward(self, x):
 B, T, C  x.shape
 k = self.key(x)
 q = self.query(x)
 wei = q @ k.transpose(-2, 1 * C**0.5
 wei = wei.masked_fill(tril  0, float('-inf'))
 wei  F.softmax(wei, dim=-1
 out = wei @ self.value(x)
 return out

Feedforward networks and layer normalization.

Key Features:

Capable of modeling long-range dependencies.

Learns contextual representations of character sequences.

Trained end-to-end with teacher forcing via cross-entropy loss.

The modelʼs depth and attention mechanisms allow it to learn syntax, speaker
structure, and sequence rhythm, which are evident in the generated outputs.

GPT Model

class GPTLanguageModel(nn.Module):
 def __init__(self):
 self.blocks = nn.Sequential(*[Block(...) for _ in range(n_layer)])
 self.ln_f = nn.LayerNorm(n_embd)
 self.lm_head = nn.Linear(n_embd, vocab_size)

GPT Scratch  Project Paper 5

4. Training Setup
Training was conducted on a system equipped with an NVIDIA RTX 3060 GPU.
PyTorch 2.7.0 with CUDA 11.8 was used for implementation. Models were trained
using the AdamW optimizer with the following parameters:

Parameter Value

Steps 5000

Batch size 64

Block size 256

Embedding dim 384

Attention heads 6

Layers 6

Optimizer AdamW

Learning rate 3e-4

Evaluation Every 500 steps

Device CUDA RTX 3060

batch_size  64
block_size  256
max_iters  5000
learning_rate  3e-4
eval_interval  500
n_embd  384
n_head  6
n_layer  6
dropout  0.2

This setup provides a balance between model expressiveness and training
efficiency.

GPT Scratch  Project Paper 6

5. Results and Evaluation

5.1 Loss Curves
Loss was computed every 500 steps on both training and validation sets.

The Bigram model converges quickly but plateaus at a higher loss. The GPT model
demonstrates continued loss reduction over time, indicating deeper pattern
learning.

GPT Scratch  Project Paper 7

5.2 Perplexity
Perplexity, a measure of model uncertainty, was computed from the cross-entropy
loss.

The GPT model shows a substantially lower perplexity, affirming its ability to
predict characters more confidently.

GPT Scratch  Project Paper 8

5.3 GPU Memory Usage

Memory allocation reflects model depth and batch sizes. The GPT model
consistently uses more memory due to its multiple layers and attention
mechanisms.

6. Comparison
Feature Bigram Model Mini GPT Model

Context Length 1 character Up to 256 characters

Architecture Embedding-only Deep Transformer

Training Speed Very Fast Moderate

Output Realism Low Repetitive) High Fluent and Structured)

Application Baseline Scalable and extensible

GPT Scratch  Project Paper 9

7. Qualitative Evaluation: Text Generation

Bigram Model Output

Tetereee tteh ete se s rtdtoeeseh:

Character repetition and nonsensical structure are common.

No long-term coherence or grammatical alignment.

GPT Model Output

First Citizen:
I speak to you as men and not as beasts. Have you not suffered?
All:
Aye! Aye!

Recognizable structure resembling a Shakespearean scene.

Speaker labels, punctuation, and word flow are coherent.

This demonstrates the advantage of contextual modeling using transformers.

8. Conclusion
This study highlights the contrast between a statistical Bigram model and a neural
transformer-based GPT model in the domain of character-level language
modeling.

The Bigram model provides a computationally cheap but limited baseline.

The GPT model, although more resource-intensive, produces significantly
better outputs in terms of structure and meaning.

GPU acceleration, especially using a consumer-grade RTX 3060, enables
practical training of deep models in under an hour.

GPT Scratch  Project Paper 10

